The Early Signs of Global Warming and the Long-term Outlook for the Oceans

William Curry Bermuda Institute of Ocean Sciences

November 2012

How has Atmospheric CO₂ Changed

IPCC 4

What about the Future?

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

IPCC

The Greenhouse Effect

Incoming solar radiation Radiated out to space

Absorbed in atmosphere by greenhouse gases

> Infra-red radiation from surface

Where does the heat go?

Atmosphere

lce

Global Average Temperature and Carbon Dioxide Concentrations, 1880 - 2004

Graphic Design: Michael Ernst, The Woods Hole Research Center

Data Source CO2 (Mauna Loa): http://cdiac.esd.ornl.gov/ftp/trends/co2/maunaloa.co2

Most up to date record

Source: NASA GISS (2012)

Global warming is not uniformly distributed

Source: NASA GISS (2011)

Where does the heat go?

Atmosphere

lce

Ocean Heat Content 0-3000m Layer, 5-yr Running Composites

All oceans have been warming for the last 50 years

Levitus et al., 2000

Most of the heat goes into the oceans

1961-2003 Blue 1993-2003 Burgundy

IPCC AR4WG1 (2007)

Murphy et al. 2009 – figure from John Cook at skepticalscience.com

Argo Float

As of November 6.....

Sea Level Rise

Sea Level Rise

Where does the heat go?

Atmosphere

Ice

Summer Sea Ice 1984

NASA Goddard Space Flight Center

Summer Sea Ice 2012

NASA Goddard Space Flight Center

Ice - albedo feedback

"Albedo"

Ice/snow reflects Water absorbs

Northern Hemisphere Sea Ice Anomaly

Anomaly from 1979-2008 mean

UIUC Polar Research Group

(Stroeve et al., 2007)

Sea Ice - 1900 to 2010

UIUC Polar Research Group

Arctic Observing Systems

Ice Tethered Moored Profiler

Û

ITP System with environmental sensors and AUV docking station

ITP Drift – One year

www.whoi.edu/itp

Western Arctic

Eastern Arctic

www.whoi.edu/itp

Greenland is melting

NY Times June 8, 2004

Mass loss from the Greenland Ice Sheet

Sea-Level Rise 340 Gt/yr ~ 1 mm/yr

Greenland's contribution to sea-level rise has doubled since 2000

Most Recent Satellite Measurements

Velicogna, 2009

Antarctica is melting too.....

Velicogna, 2009

Ocean – Ice Sheet interactions

Warm subtropical waters flushing through the subpolar seas and into Greenland fjords appear to be linked to the recent surge (since early 2000) in the 3 largest outlet glaciers.

The ocean is more than just recipient of meltwater from the ice sheets (affecting surface density and sea level rise), ocean heat content appears to play an active role in accelerating their decline.

WHOI researchers are adapting existing technologies and developing new ones to make measurements under the Arctic sea ice, in Greenland's fjords -- and other challenging environments -- to determine how the ocean is interacting with these components of the climate system.

The "Other" CO₂ Problem

Fate of Anthropogenic CO₂ Emissions (2000-2007)

1.5 Pg C y⁻¹

4.2 Pg y⁻¹ Atmosphere 46%

> 2.6 Pg y⁻¹ Land 29%

2.3 Pg y⁻¹ Oceans 26%

Canadell et al. 2007, PNAS (updated); http://www.globalcarbonproject.org/

Ocean Acidification Primer

(Scott Doney, pers. comm.)

CO₂ Time Series in the North Pacific Ocean

-Rising CO₂ causes water to become more acidic -Endangering shell-forming plants & animals

Doney et al., Ann. Rev. Mar. Sci. 2009 Dore et al. PNAS 2009

Acidification Impacts - Shell forming plants & animals reduced shell formation. (calcification) lower growth rates - Habitat loss (reefs) - Less food for predators humans, fish, whales - Possible negative effects on fisheries & ecosystem services

lobsters, crabs

some plankton

cold-water corals

(Scott Doney, pers. comm.)

pteropods planktonic snails

scallops, clams, oysters

What about the Future?

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

IPCC

Summary

The evidence is strong that increasing atmospheric CO_2 is altering climate and ocean chemistry:

- Atmospheric temperatures
- Sea level
- Glacier melting and sea ice retreat
- Ocean chemistry and acidification

Bermuda Institute Of Ocean Sciences

For more information: www.bios.edu