

The Impacts of Climate Change on Ports: Examples from the U.S. and Abroad

November 15, 2012

Mike Savonis ICF International

Defining Characteristics of Ports

U.S. Freight System

- Massive, multi-modal system including roads, airports, railroads, waterways, terminals, ports, and pipelines
- In 2007, freight system moved 51 million tons worth \$45 billion per day (FAF3); Waterborne freight was about 2.6 billion tons in 2007 (BTS, 2012)
- Terminal Assets and Operations:
- Facilities to accommodate ships
- Intermodal connections trucks, and trains
- Handling gear
- Storage space (grain silos, storage tanks, refrigerated warehouses)
- Energy systems

U.S. Intermodal Freight Facilities

Climate Changes are Underway in the U.S.

- Temperature rise
- Sea-level rise
- Increase in heavy downpours
- Rapidly retreating glaciers
- Thawing permafrost
- Longer growing season
- Longer ice-free season in the ocean and on lakes and rivers
- Earlier snowmelt
- Changes in river flows

Observed U.S. Sea-Level Changes

Floods and Droughts Have Become More Common

Increases in Extreme Heat will Limit Some Operations and Damage Roads and Rail

- Changes in maintenance and construction practices
- Rise in rail buckling
- Increased use of energy for refrigerated storage

"Superstorm" Sandy

Paily Press

Port of Virginia picking up slack for stormdamaged Port of New York/New Jersey

By Michael Welles Shapiro, 1:17 p.m. EDT, November 1, 2012

Due to inclement weather in the New York and New Jersey region, the Port Authority is working to restore services at all of its facilities.

More information 💿

Exposure of Freight Terminals to Climate Change

Special Report 290, Transportation Research Board (2008)

- Six of the nation's top 10 U.S. freight gateways are at risk from sea level rise
- Dry conditions could lead to low water levels, requiring additional dredging to keep shipping channels open
- Extreme weather threatens structures, power supply and supply chain
- Heat events increase need for refrigerated storage and transport

Why this matters: Port Impacts*

CLIMATE EFFECT	IMPACTS	
More hot days	 Asphalt deterioration Thermal expansion of bridge joints, paved surfaces Pavement & structural design changes 	
Wind speeds	More frequent sign damageNeed for stronger materials	
More frequent, intense precipitation	 Increased flooding Increased peak stream flow could affect scour rates Standing water could affect structures adversely 	
Increased coastal storm intensity	 Increased storm surge and wave impacts Decreased expected lifetime of structures Erosion of land supporting coastal infrastructure 	
Sea level rise	 Permanent inundation Erosion of road base May amplify storm surges in some cases Changes in port competitiveness 	

*Sources: "The Gulf Coast Study, Phase 1," Climate Change Science Program, 2008 and "Assessing the Need for Adaptation," Courtesy of Carter Atkins, 2011.

Example: Gulf Coast 40% of US marine tonnage, 60% of energy imports

Gulf Coast Study Ports Vulnerable to Relative Sea Level Rise

Baseline (Present Day)

Study ('08) results based on IPCC4: 7 – 23" SLR Global Climate Change Impacts in US ('09): 36 – 48"

Gulf Coast Freight Handling Ports Facilities Vulnerable to Storm Surge Surge

Port of Mobile, Alabama

- 67.5 million short tons of cargo in 2008
 - Container, break/neo/dry bulk, liquid bulk, seafood, ship building and repair services
- Intermodal connectivity and access issues are a key concern for ports
- Sensitivity differs by service:
 - Containers can flood during storms
 - Refrigerated goods & equipment require electricity
 - Wind can kick up dust at coal terminal
 - High temperatures can trigger workforce safety restrictions
 - Rains can increased dredging costs

Credit: Alabama State Port Authority

Port of Mobile, Alabama

- Major concern is impacts from hurricanes
 - May cause damage to cargo, piers, buildings
 - Generally, they are used to big storms and begin operating again quickly
 - Biggest fear is a crane or major structure getting knocked over and damaging other facilities in its path

Credit: Minerals Management Service, via http://home.versatel.nl/the_sims/rig/h-katrina.htm

Example: Port of Los Angeles* Rand corporation

- Founded in 1907
- 69 km of waterfront
- 3,035 hectares of land and water
- 26 major cargo terminals

*Adapted from "Assessing the Need for Adaptation: The Port of Los Angeles/ RAND Corporation Study," Courtesy of Carter Atkins, 2011.

No SLR

1 Meter SLR

SLR Affected Areas

2 Meter SLR

SLR Affected Areas

Example: Felixstowe Dock and Railway UK Climate Impacts Programme

- **Location:** Port of Felixstowe, UK
- Facility Type:
 - Largest container port in the UK
 - Port owns and operates intermodal rail terminals in addition to port
- Activity:
 - Directed by the Climate Change Act of 2008 to report on the current and future predicted impacts of climate change
 - Conducted a risk assessment in collaboration with UKCIP
- Key Climate Risks Identified:
 - Power outages
 - Increased frequency of crane and pilot delays
 - Port closure

Felixstowe Dock and Railway

Risk Assessment Methodology

Climate variable		Impact	Consequence of impact	Likelihood	Magnitude	Risk
				Current		
				2030's		
				2060's		
1	Increased frequency of high winds or other extreme weather	Power supplies disrupted owing to off-site disruption to the network	All work would stop. Loss of Business. Reputation damage.	2	5	10
				1	5	5
				1	5	5
2	Increased frequency of high winds or other extreme weather	Ships break loose from moorings	Damage to ship, quay and cranes; disruption costs; insurance premiums rise.	1	2	2
				1	2	2
				1	2	2

Risk = likelihood of an impact occurring x magnitude of the consequences if it occurs

Likelihood	Magnitude	Consequence
1 = Negligible	1 = insignificant	20 - 25 = Very High
2 = Rare	2 = minor	15 - 20 = High
3 = Unlikely	3 = moderate	10 - 15 = Medium
4 = Possible	4 = significant	5 - 10 = Low
5 = Probable	5 = catastrophic	0 - 5 = Inconsequential

The results of the risk assessment are shown in Table 1.

• Key Thresholds:

- Wind speeds > 45mph
- 1 day work stoppage
- 3 day closure

UN Conference on Trade and Development

- Meetings of "Experts"
 - September 2011
 - September 2010
 - February 2009
- Presentations on ports in:
 - Durban, South Africa
 - Hamburg, Germany
 - Mauritius
 - Caribbean
 - Tokyo
 - San Diego
 - Gulf Coast
 - Cartagena

Port Muelles el Bosque (MEB), Cartagena, Colombia

Cartagena: 12% of Colombia's international trade MEB: 1% of Colombia's international trade (in tonnage)

Source: IFC, MEB 2011

Port Muelles El Bosque: Cartagena, Colombia International Finance Corporation

Sea level, Bahía de Cartagena(1951-1993)

Seawater flooding, 2050, observed and accelerated SLR scenarios

Financial analysis of the impacts

Thank you!